ENG/中
老虎证券
行情
产品介绍
Cash Boost账户
美股
美股碎股
港股
A股通
期权
期货
美国国债
定投
固定票息票据
Tiger BOSS Debit Card
基金超市
老虎钱袋子
老虎API平台
Wealth
费用
综合账户
股票与ETF
期权、窝轮与牛熊证
期货
债券
基金超市
Cash Boost
股票与ETF
融资利率
活动
帮助
账户操作
如何开户
开户文件
账户类型
资金与转仓
入金
DDA快捷入金
出金
转入股票
转出股票
货币兑换
产品与交易
可交易产品
订单类型
交易规则
申报
融资融券
保证金与杠杆
风险管理
做空风险
基金超市
基金开户与交易
Cash Boost账户
Cash Boost 账户FAQ
如何开通 Cash Boost 账户
如何用Cash Boost 账户交易
如何绑定CDP证券账户
Tiger Boss Debit Card
常见问题
费用说明
如何充值
如何使用我的Debit card
账单报表
账单报表
股息(分红)
专栏
TigerAI
机构
财富及资产管理人
自营交易机构
介绍经纪商
三方服务商
登录
立即注册
Toggle
美股
详情
本页面由Tiger Fintech (Singapore) Pte. Ltd.提供服务
Shift Technologies, Inc.
0.1703
+0.0000
成交量:
- -
成交额:
- -
市值:
289.49万
市盈率:
-0.02
高:
0.1703
开:
0.1703
低:
0.1703
收:
0.1703
数据加载中...
总览
公司
新闻资讯
公告
“推理革命”爆发100天:DeepSeek-R1复现研究全揭秘
新智元
·
05-05
深夜突袭,DeepSeek-Prover-V2加冕数学王者!671B数学推理逆天狂飙
市场资讯
·
05-01
字节跳动最新思考模型Seed-Thinking-v1.5技术细节公开,4月17日开放接口
IT之家
·
04-14
计算机:AI产业速递:LLAMA4正式发布 开源模型迈向原生多模态新纪元
长江证券股份有...
·
04-07
源达研究报告:国产创新催动AI平权,下游应用有望百花齐放
市场资讯
·
04-03
真正的LLM Agent
华尔街见闻
·
03-23
新开普:星普大模型内部测评智能推理效果与DeepSeek-R1相近 算力消耗约其1/20
美港电讯
·
03-07
干货满满!关于Deepseek,基金经理最关心的事······
新浪基金
·
02-20
刚刚,DeepSeek发新成果!梁文锋亲自参与,实习生挑大梁,显著加速AI训练推理
智东西
·
02-18
科大讯飞:纯国产算力的星火 X1 新版本预计在 3 月内完成,全面对标甚至超过 OpenAI o1
IT之家
·
02-13
DeepSeek引爆,券商分析师节后“卷疯了”!
券商中国
·
02-10
训练成本不到50美元,研究人员打造出媲美OpenAI o1的推理模型
IT之家
·
02-06
研究人员以不到50美元创建可与OpenAI o1模型相媲美的s1模型
Odaily
·
02-06
封锁下成长起来的中国AI“三叉戟”,为何让大洋彼岸的硅谷恐慌?
市场资讯
·
01-30
DeepSeek最重要的三篇论文解读
市场资讯
·
01-29
DeepSeek 独立发现 o1 核心思路:OpenAI 首席研究官亲自证实,阿尔特曼被迫发声
IT之家
·
01-29
DeepSeek R1正式版发布:比肩OpenAI o1,支持模型蒸馏,国产AI迎来里程碑时刻
市场资讯
·
01-27
DeepSeek,超震撼!这个国产AI凭什么让游戏大神都惊呆了?
市场资讯
·
01-27
全球掀DeepSeek复现狂潮!硅谷巨头神话崩塌,30刀见证啊哈时刻
媒体滚动
·
01-26
DeepSeek-R1持续刷屏,连Open R1都来了!抱抱脸发起,1天狂揽1.9k星
量子位
·
01-26
更多
{"basename":"/hans","ssrTDKData":{"titleTemplate":"%s - 老虎证券","title":"老虎证券全球投资理财平台| 一站式投资美股新股港股A股","description":"老虎证券助您一站式投资美股,新股,港股,A股等全球金融理财产品。新加坡华人最信赖的在线投资平台,现在加入即享低费用,24/5 无时差炒美股投资理财!","keywords":"老虎证券,老虎证券开户,老虎券商,老虎证券官网,老虎证券app,tigertrade老虎证券,股票,炒股,新加坡股票交易平台,投资,投资理财","social":{"ogDescription":"老虎证券助您一站式投资美股,新股,港股,A股等全球金融理财产品。新加坡华人最信赖的在线投资平台,现在加入即享低费用,24/5 无时差炒美股投资理财!","ogImage":"https://c1.itigergrowtha.com/portal5/static/media/og-logo.be62fbe1.png","ogUrl":"https://www.itiger.com/hans/stock/SFT/news"},"companyName":"老虎证券"},"pageData":{"isMobile":false,"isTiger":false,"isTTM":true,"region":"SGP","license":"TBSG","edition":"fundamental","symbol":"SFT","isAnalysisPage":false},"__swrFallback__":{"@#url:\"https://hq.skytigris.cn/stock_info/detail/global\",params:#delay:false,,method:\"POST\",data:#items:@#symbol:\"SFT\",,,,,undefined,":{"symbol":"SFT","market":"US","secType":"STK","nameCN":"Shift Technologies, Inc.","latestPrice":0.1703,"timestamp":1746820800000,"preClose":0.1703,"halted":4,"volume":0,"delay":0,"floatShares":12586491,"shares":16999021,"eps":-10.42588,"marketStatus":"退市","change":0,"latestTime":"05-09 16:00:00 EDT","open":0.1703,"high":0.1703,"low":0.1703,"amount":0,"amplitude":0,"askPrice":0,"askSize":0,"bidPrice":0,"bidSize":0,"shortable":3,"etf":0,"ttmEps":-10.42588,"tradingStatus":0,"nextMarketStatus":{"tag":"盘前交易","tradingStatus":1,"beginTime":1747036800000},"marketStatusCode":5,"adr":0,"exchange":"NASDAQ","adjPreClose":0.1703,"volumeRatio":0},"@#url:\"https://hq.skytigris.cn/stock_info/fundamental/all\",params:#delay:false,,method:\"POST\",data:#items:@#symbol:\"SFT\",,,,,undefined,":{"symbol":"SFT","floatShares":12586491,"roa":"-37.67%","roe":"-2221.90%","lyrEps":-19.91671,"shares":16999021,"dividePrice":0,"high":0.1703,"amplitude":0,"preClose":0.1703,"low":0.1703,"week52Low":0.1,"pbRate":"-0.02","psRate":"0.01","week52High":7.13,"institutionHeld":0,"latestPrice":0.1703,"eps":-10.42588,"divideRate":0,"volume":0,"delay":0,"ttmEps":-10.42588,"open":0.1703},"$inf$@#url:\"https://stock-news.skytigris.cn/v2/news/list\",params:#symbols:\"SFT\",pageSize:20,pageCount:1,lang_content:\"cn\",edition:\"fundamental\",,,undefined,":[{"items":[{"id":"2533304978","title":"“推理革命”爆发100天:DeepSeek-R1复现研究全揭秘","url":"https://stock-news.laohu8.com/highlight/detail?id=2533304978","media":"新智元","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2533304978?lang=zh_cn&edition=fundamental","pubTime":"2025-05-05 15:15","pubTimestamp":1746429332,"startTime":"0","endTime":"0","summary":"尤其是DeepSeek-R1的发布,更是引发了广泛的社会影响,同时也点燃了研究社区对推理的热情。推理语言模型的更多发展方向:研究团队注意到,尽管DeepSeek-R1推动了RLMs的训练,但仍有许多监督策略尚未探索。RLVR在推理语言模型中的应用RL数据集DeepSeek-R1-Zero通过独立的RLVR流程在推理和知识任务中取得了优异表现。表4总结了多个竞争性开源 DeepSeek-R1 复制研究在强化学习验证任务中使用的算法和奖励设计方案。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://tech.ifeng.com/c/8j6uiFDtzwh","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"fenghuang_stock","symbols":["RL","SFT","BK4202","BK4214","LU0006061336.USD","BK4588","BK4585"],"gpt_icon":0},{"id":"2532001044","title":"深夜突袭,DeepSeek-Prover-V2加冕数学王者!671B数学推理逆天狂飙","url":"https://stock-news.laohu8.com/highlight/detail?id=2532001044","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2532001044?lang=zh_cn&edition=fundamental","pubTime":"2025-05-01 09:40","pubTimestamp":1746063600,"startTime":"0","endTime":"0","summary":" 就在刚刚,DeepSeek-Prover-V2技术报告也来了! 就在刚刚,DeepSeek-Prover-V2正式发布。 此次DeepSeek-Prover-V2提供了两种模型尺寸:7B和671B参数。 DeepSeek-Prover-V2-671B:在DeepSeek-V3-Base基础上训练,推理性能最强。 DeepSeek-Prover-V2-7B:基于DeepSeek-Prover-V1.5-Base构建,上下文长度扩展至高达32Ktoken。 此次DeepSeek-Prover-V2的训练核心,就是靠“递归+强化学习”。 首先,DeepSeek-V3会拆解复杂定理,生成一系列子目标和推理思路。 具体来说,DeepSeek-Prover-V2专门用于Lean 4中的形式化定理证明。","market":"other","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/roll/2025-05-01/doc-ineuzkhe9586165.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4214","SFT"],"gpt_icon":0},{"id":"2527978114","title":"字节跳动最新思考模型Seed-Thinking-v1.5技术细节公开,4月17日开放接口","url":"https://stock-news.laohu8.com/highlight/detail?id=2527978114","media":"IT之家","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2527978114?lang=zh_cn&edition=fundamental","pubTime":"2025-04-14 12:44","pubTimestamp":1744605877,"startTime":"0","endTime":"0","summary":"IT之家 4 月 14 日消息,IT之家从豆包大模型团队获悉,字节跳动最新思考模型 Seed-Thinking-v1.5 技术细节今日公开,该模型将于 4 月 17 日通过火山引擎开放接口供用户体验。通用任务:人类评估表现超 DeepSeek R1 8%,覆盖多场景需求。成本优势:单位推理成本相比 DeepSeek R1 降低 50%,实现性能与效率的平衡。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://tech.ifeng.com/c/8iXeOse90RG","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"fenghuang_stock","symbols":["BK4214","BK4588","SFT","SRS","BK4202","BK4585","RL","LU0006061336.USD"],"gpt_icon":0},{"id":"2525868038","title":"计算机:AI产业速递:LLAMA4正式发布 开源模型迈向原生多模态新纪元","url":"https://stock-news.laohu8.com/highlight/detail?id=2525868038","media":"长江证券股份有...","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2525868038?lang=zh_cn&edition=fundamental","pubTime":"2025-04-07 00:00","pubTimestamp":1743955200,"startTime":"0","endTime":"0","summary":"事件描述美国时间4 月5 日,Meta 发布最新模型系列Llama 4,该系列分别包括Llama 4 Scout、Llama4 Maverick 和 Llama 4 Behemoth。事件评论亮相即登顶开源模型排名榜单,Meta 首批MoE 架构模型。Llama 4 系类是Llama 系列模型中第一批使用MoE 构建的模型。Llama 4 模型基于原生多模态进行设计,采用了早期融合技术,以便将文本和视觉标记无缝集成到一个统一的模型主干中。该编码器基于MetaCLIP,但与一个冻结的 Llama 模型一起单独进行训练,以使编码器能更好地适配大语言模型。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":{"source":"tencent","url":"http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN2025040709274394cd9941&s=b","rn_cache_url":null,"customStyle":"body{padding-top:10px;}#news_title{font-weight:bold;#titleStyle#;}#news_description span{font-size:12px;#descriptionStyle#;}.footer-note{#statement#}","selectors":".mod-LoadTzbdNews, body","filters":".relate-stock, .hot-list, .recom-box, .wx-sou","directOrigin":true},"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"http://gu.qq.com/resources/shy/news/detail-v2/index.html#/?id=nesSN2025040709274394cd9941&s=b","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"tencent","symbols":["BK4543","LU2065171402.SGD","LU1003077747.HKD","LU2462157665.USD","SFT","LU1670628061.USD","LU2430703251.USD","LU0006061336.USD","BK4588","LU0056508442.USD","IE00B7KXQ091.USD","IE00BJTD4N35.SGD","IE00B775H168.HKD","IE0004445015.USD","IE00B19Z3581.USD","LU2265009873.SGD","LU0444971666.USD","SG9999002224.SGD","LU0545039389.USD","SG9999014898.SGD","LU0795875169.SGD","LU0154236417.USD","LU2023250330.USD","LU1564329115.USD","LU2756315318.SGD","LU0787776722.HKD","LU0672654240.SGD","LU0690374615.EUR","LU1804176565.USD","LU0820561909.HKD","LU0011850046.USD","LU0109391861.USD","LU0788109477.HKD","LU1670710661.SGD","LU2461242641.AUD","RL","LU2552382215.SGD","LU2361045086.USD","LU0640476718.USD","LU0642271901.SGD","LU2720916845.USD","IE00BK4W5M84.HKD","LU1261432733.SGD","LU0265550946.USD","GB00B4LPDJ14.GBP","LU0320765059.SGD","META","LU0072462426.USD","LU0053666078.USD","LU0957808578.USD"],"gpt_icon":1},{"id":"2524369582","title":"源达研究报告:国产创新催动AI平权,下游应用有望百花齐放","url":"https://stock-news.laohu8.com/highlight/detail?id=2524369582","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2524369582?lang=zh_cn&edition=fundamental","pubTime":"2025-04-03 17:38","pubTimestamp":1743673080,"startTime":"0","endTime":"0","summary":" 中国创业公司Monica于2025年3月6日发布全球第一款通用型AI Agent——Manus,其在GAIA 的基准测试中取得了新的SOTA表现, 超越Open AI同级产品。目前,Manus已提供多种处理现实世界任务的案例,包括个性化旅行规划、深度股票分析、保险政策比较、供应商采购、财务报告分析、专业数据整理、教育内容创建等。此外,官方计划在今年开源Manus的推理部分,国内厂商有望内化Manus的通用任务执行能力,从而进一步推动AI应用的落地。","market":"hk","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/roll/2025-04-03/doc-inerwrzp2603702.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"1","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["LU1146622755.USD","BK0133","BK0142","BK0020","600570","BK0070","BK0077","BK4109","PRM","BK4214","BK0028","BK0146","LU0405327148.USD","LU1655091616.SGD","LU0405327494.USD","BK0196","SFT","002230","300253","BK0109","BK0126","300624","BK0183","BK0012","BK0114","LU1820825898.SGD","SGXZ81163826.USD","BK0188","BK0089","BK0231","BK0058","BK0095","BK0026","BK0129","SGXZ49509284.SGD","BK0038"],"gpt_icon":0},{"id":"2521229785","title":"真正的LLM Agent","url":"https://stock-news.laohu8.com/highlight/detail?id=2521229785","media":"华尔街见闻","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2521229785?lang=zh_cn&edition=fundamental","pubTime":"2025-03-23 10:22","pubTimestamp":1742696563,"startTime":"0","endTime":"0","summary":"Alexander的观点很明确:未来 AI 智能体的发展方向还得是模型本身,而不是工作流(Work Flow)。他认为像 Manus 这样基于“预先编排好的提示词与工具路径”构成的工作流智能体,短期或许表现不错,但长期必然遇到瓶颈。这种“提示驱动”的方式无法扩展,也无法真正处理那些需要长期规划、多步骤推理的复杂任务。而下一代真正的 LLM 智能体,则是通过“强化学习(RL)与推理(Reasoning)的结合”来实现。","market":"us","thumbnail":"https://wpimg-wscn.awtmt.com/0aa83fb4-92f4-4b77-b1a1-0c8c16998af6.png","type":0,"news_type":0,"thumbnails":["https://wpimg-wscn.awtmt.com/0aa83fb4-92f4-4b77-b1a1-0c8c16998af6.png"],"rights":{"source":"wallstreetcn_hot_news","url":"https://wallstreetcn.com/articles/3743669","rn_cache_url":null,"directOrigin":true},"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://wallstreetcn.com/articles/3743669","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"wallstreetcn_hot_news","symbols":["BK4202","SFT","BK4585","BK4588","BK4214","RL","LU0006061336.USD"],"gpt_icon":1},{"id":"2517303146","title":"新开普:星普大模型内部测评智能推理效果与DeepSeek-R1相近 算力消耗约其1/20","url":"https://stock-news.laohu8.com/highlight/detail?id=2517303146","media":"美港电讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2517303146?lang=zh_cn&edition=fundamental","pubTime":"2025-03-07 09:34","pubTimestamp":1741311260,"startTime":"0","endTime":"0","summary":null,"market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://www.ushknews.com/","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"live_meigang","symbols":["BK4214","300248","BK0129","BK0170","BK4202","BK0091","RL","LU0006061336.USD","BK0231","BK4585","BK4588","SFT","BK0023","BK0133","BK0077","BK0093"],"gpt_icon":0},{"id":"2512998724","title":"干货满满!关于Deepseek,基金经理最关心的事······","url":"https://stock-news.laohu8.com/highlight/detail?id=2512998724","media":"新浪基金","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2512998724?lang=zh_cn&edition=fundamental","pubTime":"2025-02-20 14:28","pubTimestamp":1740032880,"startTime":"0","endTime":"0","summary":"在最新一期泰客Talk《Deepseek的真相和谎言》中,基金经理于腾达和券商分析师童飞分享了关于Deepseek对二级市场投资的影响的观点。干货满满,整理如下——。 Deepseek做的是一件科学的工作,但是投资不只是一件科学的数据性的工作。","market":"sh","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/money/fund/jjh/2025-02-20/doc-inemchxk2430529.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["IE00BMPRXN33.USD","HK0000320264.USD","LU1712237335.SGD","LU2471134796.USD","LU1119994496.HKD","LU1917777945.USD","3NVD.UK","LU0265550359.USD","LU1923623000.USD","NVD","LU1720051017.SGD","SG9999004303.SGD","LU2097344357.USD","LU2065171402.SGD","BK4549","LU1261432733.SGD","IE00BYXW3230.USD","LU0056508442.USD","NVDX","LU0048584097.USD","NVD2.UK","NVDS.UK","NVIW.SI","LU0943347566.SGD","NVDA","IE00BN29S564.USD","LU0094547139.USD","SGXZ51526630.SGD","SNVD.UK","NVDS","NVD3.UK","2NVD.UK","LU0061475181.USD","LU1718418525.SGD","LU0417517546.SGD","RL","LU0787776722.HKD","BK4605","LU1366192091.USD","BK4532","LU0316494557.USD","IE00BJJMRX11.SGD","NVDD","SFT","SG9999015986.USD","NVDY","LU0082616367.USD","LU0345769631.USD","NVDU"],"gpt_icon":1},{"id":"2512137906","title":"刚刚,DeepSeek发新成果!梁文锋亲自参与,实习生挑大梁,显著加速AI训练推理","url":"https://stock-news.laohu8.com/highlight/detail?id=2512137906","media":"智东西","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2512137906?lang=zh_cn&edition=fundamental","pubTime":"2025-02-18 17:55","pubTimestamp":1739872502,"startTime":"0","endTime":"0","summary":"编译 | 陈骏达编辑 | Panken智东西2月18日报道,今天下午,DeepSeek团队发布一篇新论文,介绍了一种改进的稀疏注意力机制NSA,可用于超快速的长上下文训练与推理。让人眼前一亮的是,DeepSeek创始人兼CEO梁文锋这次出现在了合著名单之中,在作者排名中位列倒数第二。在这一模型的基础上,DeepSeek使用了NSA、全注意力以及其它注意力机制,并进行了评估。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://tech.ifeng.com/c/8h4s5XaVlsO","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"fenghuang_stock","symbols":["SFT","BK4214"],"gpt_icon":0},{"id":"2511683267","title":"科大讯飞:纯国产算力的星火 X1 新版本预计在 3 月内完成,全面对标甚至超过 OpenAI o1","url":"https://stock-news.laohu8.com/highlight/detail?id=2511683267","media":"IT之家","labels":["productRelease"],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2511683267?lang=zh_cn&edition=fundamental","pubTime":"2025-02-13 21:37","pubTimestamp":1739453859,"startTime":"0","endTime":"0","summary":"IT之家 2 月 13 日消息,科大讯飞今晚发布了最新的投资者关系活动记录表,主要针对 DeepSeek 方面的问题进行解答。科大讯飞表示,飞正在训练的纯国产算力的星火 X1 新版本预计在 3 月内完成,预期可以实现数学答题和过程思维链能力全面对标甚至超过 OpenAI o1。2024 年 9 月 OpenAI o1-preview 发布以后,国内技术领先的大模型厂商也在快速跟进。","market":"hk","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":{"source":"sina_tech","url":"https://tech.sina.cn/mobile/xp/2025-02-14/detail-inekizxu0500914.d.html?vt=4","rn_cache_url":null,"customStyle":"body{padding-top:10px;}.art_tit_h1{#titleStyle#}a{#lv2TextColor#}.art_time, .art_cite{#sourceStyle#;} .art_cite{margin-left: 3px;}.weibo_user{#sourceStyle#; margin-bottom: 0; display: inline-block;}.weibo_time{#sourceStyle#};","selectors":".module-article, article","filters":"header, .voice2, .tags, #norm_qrcode_link_auto, .unfold-box, .action, .j_float_wbro, .j_article_wbreco","directOrigin":true},"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://tech.sina.cn/mobile/xp/2025-02-14/detail-inekizxu0500914.d.html?vt=4","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"1","news_top_title":null,"news_tag":"productRelease","news_rank":0,"length":0,"strategy_id":0,"source":"sina_tech","symbols":["LU2054465674.USD","3NVD.UK","NVDS.UK","SFT","IE00BDRTCR15.USD","IE00BQXX3F31.USD","LU1066051225.USD","LU0082616367.USD","NVDU","IE0004445239.USD","LU1267930730.SGD","NVDA","IE00BQXX3D17.EUR","LU0942090050.USD","LU0444973449.USD","LU1066053197.SGD","IE00BKDWB100.SGD","LU1868837136.USD","LU2063271972.USD","LU0256863811.USD","LU1989772923.USD","NVD","2NVD.UK","LU2552382058.USD","BK4592","SNVD.UK","NVD2.UK","IE00B1BXHZ80.USD","IE00BJTD4V19.USD","LU2750360997.AUD","NVD3.UK","LU0347712357.USD","BK4503","HK0000306701.USD","LU1551013425.SGD","NVDS","LU0056508442.USD","IE00BKVL7J92.USD","IE0004445015.USD","LU0965509283.SGD","LU2552382132.HKD","LU1496350171.SGD","NVDD","NVDY","NVIW.SI","LU0006306889.USD","LU1674673691.USD","NVDX","IE00BQXX3C00.GBP"],"gpt_icon":1},{"id":"2510008599","title":"DeepSeek引爆,券商分析师节后“卷疯了”!","url":"https://stock-news.laohu8.com/highlight/detail?id=2510008599","media":"券商中国","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2510008599?lang=zh_cn&edition=fundamental","pubTime":"2025-02-10 10:14","pubTimestamp":1739153640,"startTime":"0","endTime":"0","summary":" DeepSeek火爆,忙坏了券商分析师! 券商中国记者不完全统计,春节之后不到短短四五天的时间里,仅在Wind平台发布,标题含DeepSeek的研究报告就超过200篇。而Wind客户终端近期阅读量最高的三篇研究报告都与DeepSeek相关。 “从业者其实都感到兴奋,DeepSeek的突破不仅能打开产业空间,还很可能提升对中国整体科技行业的信心。” DeepSeek的价值,已经得到普遍认可。 随着春节期间DeepSeek相关信息不断发酵,DeepSeek相关研究逐渐成为AI乃至科技行业研究的“显学”。","market":"sh","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/hyyj/2025-02-10/doc-ineiyiik3768499.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["BK4214","SFT"],"gpt_icon":0},{"id":"2509260189","title":"训练成本不到50美元,研究人员打造出媲美OpenAI o1的推理模型","url":"https://stock-news.laohu8.com/highlight/detail?id=2509260189","media":"IT之家","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2509260189?lang=zh_cn&edition=fundamental","pubTime":"2025-02-06 09:23","pubTimestamp":1738805036,"startTime":"0","endTime":"0","summary":"研究人员透露,s1 是从谷歌的推理模型 Gemini 2.0 Flash Thinking Experimental 中蒸馏出来的。不出所料,大型人工智能实验室对此并不满意,例如 OpenAI 此前就指责 DeepSeek 不当获取其 API 数据用于模型蒸馏。s1 的研究人员希望找到实现强大推理性能和“测试时扩展”的最简单方法,这些是 OpenAI 的 o1 中的一些突破。论文显示,在 s1 的推理过程中添加“等待”一词,有助于模型获得稍微更准确的答案。","market":"hk","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://tech.ifeng.com/c/8gkKvm8l34S","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"fenghuang_stock","symbols":["GOOG","LU2028103732.USD","LU0289941410.SGD","LU2111349929.HKD","SG9999015978.USD","IE00BSNM7G36.USD","BK4553","LU0557290698.USD","LU2063271972.USD","LU2458330169.SGD","LU0708995401.HKD","BK4525","LU0097036916.USD","BK4581","LU0353189680.USD","LU0203347892.USD","LU2505996509.AUD","LU1267930730.SGD","GOOGL","BK4514","LU0053666078.USD","LU2362540622.SGD","USJW.SI","LU0642271901.SGD","LU1201861165.SGD","LU2237443978.SGD","BK4503","LU0234570918.USD","LU0477156953.USD","LU1720051108.HKD","LU2430703251.USD","LU2592432038.USD","IE0004091025.USD","LU0072462426.USD","LU0320765059.SGD","SG9999018865.SGD","LU1989764664.SGD","LU2106854487.HKD","LU0345770308.USD","LU0742534661.SGD","IE0004086264.USD","LU2237443549.SGD","LU2462157665.USD","IE00BK4W5L77.USD","SFT","LU1145028129.USD","SG9999014906.USD","LU2125154778.USD","LU0345769128.USD","IE00BKPKM429.USD"],"gpt_icon":1},{"id":"2509026576","title":"研究人员以不到50美元创建可与OpenAI o1模型相媲美的s1模型","url":"https://stock-news.laohu8.com/highlight/detail?id=2509026576","media":"Odaily","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2509026576?lang=zh_cn&edition=fundamental","pubTime":"2025-02-06 07:53","pubTimestamp":1738799615,"startTime":"0","endTime":"0","summary":"Odaily星球日报讯 根据上周五发布的一篇新研究论文,斯坦福大学和华盛顿大学的人工智能研究人员能够以不到 50 美元的云计算积分训练一个人工智能“推理”模型。\n在衡量数学和编码能力的测试中,被称为 s1 的模型表现类似于尖端推理模型,例如 OpenAI 的 o1 和 DeepSeek 的 r1。s1 模型以及用于训练它的数据和代码可在 GitHub 上找到。\ns1 背后的团队表示,他们通过提炼(distillation)创建了人工智能模型,这是一种通过训练另一个人工智能模型的答案来提取“推理”能力的过程。研究人员表示,s1 是从谷歌的推理模型之一 Gemini 2.0 Flash Thinking Experimental 中提炼出来的。提炼是伯克利研究人员上个月以约 450 美元的价格创建人工智能推理模型所采用的相同方法。\ns1 背后的研究人员正在寻找实现强大推理性能和“测试时间扩展”的最简单方法,或者让 AI 模型在回答问题之前进行更多思考。这些是 OpenAI 的 o1 中的一些突破,其他 AI 实验室试图通过各种技术复制这些突破。s1 论文提出,可以使用一种称为监督微调(SFT)的过程,利用相对较小的数据集提炼推理模型,在此过程中,明确指示 AI 模型模仿数据集中的某些行为。SFT 往往比 DeepSeek 用于训练其对 OpenAI 的 o1、R1 的答案的大规模强化学习方法更便宜。\ns1 基于阿里巴巴旗下中国 AI 实验室 Qwen 的一个小型现成 AI 模型,可免费下载。为了训练 s1,研究人员创建了一个仅包含 1,000 个精心策划的问题的数据集,并附上这些问题的答案以及 Google 的 Gemini 2.0 Flash Thinking Experimental 中每个答案背后的“思考”过程。\n据研究人员称,在使用 16 个 Nvidia H100 GPU 不到 30 分钟的时间内训练 s1 后,s1 在某些 AI 基准测试中取得了强劲的表现。参与该项目的斯坦福大学研究员 Niklas Muennighoff 称,他现在就可以以大约 20 美元的价格租用必要的计算机。(TechCrunch)\n","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://www.odaily.news/newsflash/417038?source=share","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"odaily_live","symbols":["LU0648000940.SGD","NVDS","LU0472753341.HKD","LU2433249047.HKD","NVDD","LU1032955483.USD","LU1429558221.USD","LU0648001328.SGD","SNVD.UK","159998","GOOG","NVDX","NVIW.SI","NVDS.UK","LU0651946864.USD","LU1152091168.USD","LU2125909759.SGD","LU2108987350.USD","HK0000306701.USD","LU1629891620.HKD","SG9999001077.SGD","3NVD.UK","NVD","LU1244550221.USD","LU2764263039.SGD","NVD3.UK","BK4527","GOOGL","161631","LU0056508442.USD","09988","LU2242649171.HKD","NVD2.UK","NVDY","NVDA","LU1803068979.SGD","BABA","IE00BSNM7G36.USD","LU0348814723.USD","NVDU","2NVD.UK","SFT","LU1267930730.SGD","BK4534","LU1127390331.HKD","NVDL","LU2764263203.CNY","IE00B3M56506.USD","USJW.SI"],"gpt_icon":1},{"id":"2507647516","title":"封锁下成长起来的中国AI“三叉戟”,为何让大洋彼岸的硅谷恐慌?","url":"https://stock-news.laohu8.com/highlight/detail?id=2507647516","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2507647516?lang=zh_cn&edition=fundamental","pubTime":"2025-01-30 20:04","pubTimestamp":1738238640,"startTime":"0","endTime":"0","summary":" 但在初版GPT3.5发布的半年后 ,百度的文心一言,便打响了大模型领域“超英赶美”的第一枪,由此开启了国内“百模大战”的大浪淘沙——再到2025蛇年春节前夕声名鹊起的Deepseek,国内AI企业在性能和成本的综合实力上,超过了大洋彼岸的硅谷。 在Deepseek-R1推出的4天后,即当地时间1月24日,美国海军即发布警告信称,基于“潜在安全和道德问题”,已要求人员避免以任何形式使用中国公司的Deepseek模型。","market":"sg","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/xwzmt/2025-01-30/doc-inehuhhc1482621.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["LU0197773160.USD","LU0708994859.HKD","LU0994945656.USD","GOOG","LU0320764599.SGD","LU0238689110.USD","LU0823414478.USD","IE0004445239.USD","LU0215105999.USD","LU0965509010.AUD","89888","09888","LU2362540622.SGD","LU0130102774.USD","BIDU","LU1046421795.USD","LU2720916845.USD","LU2420271590.USD","LU2242650005.HKD","TSLA","LU1868836591.USD","HK0000320264.USD","LU1116320737.USD","IE00BJJMRY28.SGD","LU0251131958.USD","TSYW.SI","LU2087625088.SGD","LU1059921491.USD","BK4525","LU1670627923.USD","IE00BJJMRX11.SGD","SFT","LU0792757196.USD","LU2326559502.SGD","LU0348723411.USD","LU2023251221.USD","LU0228367735.SGD","LU1923623000.USD","LU2430703251.USD","GOOGL","LU1506573853.SGD","LU2237443978.SGD","LU1145028129.USD","LU0588546209.SGD","USJW.SI","LU0307460666.USD","LU0163747925.USD","RL","SG9999002224.SGD","BK4554"],"gpt_icon":1},{"id":"2507804706","title":"DeepSeek最重要的三篇论文解读","url":"https://stock-news.laohu8.com/highlight/detail?id=2507804706","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2507804706?lang=zh_cn&edition=fundamental","pubTime":"2025-01-29 15:30","pubTimestamp":1738135800,"startTime":"0","endTime":"0","summary":" 中国人工智能初创企业DeepSeek正在以惊人的速度改写全球科技竞争格局。2025年初,美国总统特朗普在一场集会上直言不讳地表示,DeepSeek的崛起为美国产业界敲响了警钟,成为美国科技优势地位面临挑战的最新注脚。 DeepSeek的成功并非偶然。DeepSeek-R1:通过强化学习提升大型语言模型的推理能力。DeepSeek-V3:高效的混合专家模型。DeepSeek-LLM:以长期主义扩展开源语言模型。","market":"us","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/roll/2025-01-29/doc-inehschw3760935.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["RL","MMM","LU0787776722.HKD","LU0368265764.SGD","AGI","LU0006061336.USD","LU0683600562.USD","LU0498741114.HKD","LU1093756168.USD","BK4206","BK4585","BK4017","BK4202","LU0055631609.USD","BK4534","BK4512","LU0496367417.USD","SFT","BK4533","LU1093756325.SGD","LU0498741890.SGD","BK4588","BK4214"],"gpt_icon":0},{"id":"2507988519","title":"DeepSeek 独立发现 o1 核心思路:OpenAI 首席研究官亲自证实,阿尔特曼被迫发声","url":"https://stock-news.laohu8.com/highlight/detail?id=2507988519","media":"IT之家","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2507988519?lang=zh_cn&edition=fundamental","pubTime":"2025-01-29 12:20","pubTimestamp":1738124419,"startTime":"0","endTime":"0","summary":"DeepSeek R1 横空出世撼动了整个硅谷,这波 AI 恐惧仍在蔓延扩散。阿尔特曼、OpenAI 首席研究官不得不发文承认 DeepSeek 的技术突破,预告未来会加快新模型的发布。与此同时,研究人员们也纷纷展开了对 DeepSeek 技术的深入分析。DeepSeek 掀起的滔天巨浪,让全世界为之震颤。R1 在 Hugging Face 中的 like,从今年 1 月起直线飙升。与此同时,OpenAI 首席研究官 Mark Chen 也承认道,DeepSeek 的确独立发现了一些 o1 的核心 idea。恐怕连 DeepSeek 自己也没有想到,这将成为改写 AI 竞争格局的一记重拳。","market":"us","thumbnail":"https://k.sinaimg.cn/n/spider20250129/743/w1080h463/20250129/597f-6a2345367ff7521b49a324189a4a4e3c.png/w120h90l50t1611.jpg","type":0,"news_type":0,"thumbnails":["https://k.sinaimg.cn/n/spider20250129/743/w1080h463/20250129/597f-6a2345367ff7521b49a324189a4a4e3c.png/w120h90l50t1611.jpg"],"rights":{"source":"sina_tech","url":"https://tech.sina.cn/mobile/xp/2025-01-31/detail-inehrhaz6546577.d.html?vt=4","rn_cache_url":null,"customStyle":"body{padding-top:10px;}.art_tit_h1{#titleStyle#}a{#lv2TextColor#}.art_time, .art_cite{#sourceStyle#;} .art_cite{margin-left: 3px;}.weibo_user{#sourceStyle#; margin-bottom: 0; display: inline-block;}.weibo_time{#sourceStyle#};","selectors":".module-article, article","filters":"header, .voice2, .tags, #norm_qrcode_link_auto, .unfold-box, .action, .j_float_wbro, .j_article_wbreco","directOrigin":true},"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://tech.sina.cn/mobile/xp/2025-01-31/detail-inehrhaz6546577.d.html?vt=4","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina_tech","symbols":["NVDS.UK","LU1366192091.USD","LU2054465674.USD","NVDS","LU0965509010.AUD","NVIW.SI","LU0096362180.USD","LU2242649171.HKD","LU0265550946.USD","LU0316494557.USD","BK4550","BK4548","2NVD.UK","LU2125909247.SGD","NVDU","NVD3.UK","LU2506951792.HKD","SG9999014575.USD","LU0353189680.USD","NVDA","LU0234570918.USD","IE00B5949003.HKD","LU0225283273.USD","LU0957808578.USD","LU2097344357.USD","LU1323610961.USD","LU1119994496.HKD","SNVD.UK","HK0000320264.USD","LU1868837300.USD","NVDY","IE00BMPRXQ63.HKD","NVD2.UK","LU1127390331.HKD","LU1935042215.USD","LU0127658192.USD","LU0823421416.USD","SFT","LU1280957306.USD","LU2125909759.SGD","LU0985320562.USD","LU1316542783.SGD","SG9999000418.SGD","NVDD","LU2491050071.SGD","3NVD.UK","LU0494093205.USD"],"gpt_icon":1},{"id":"2506161341","title":"DeepSeek R1正式版发布:比肩OpenAI o1,支持模型蒸馏,国产AI迎来里程碑时刻","url":"https://stock-news.laohu8.com/highlight/detail?id=2506161341","media":"市场资讯","labels":["productRelease"],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2506161341?lang=zh_cn&edition=fundamental","pubTime":"2025-01-27 14:59","pubTimestamp":1737961140,"startTime":"0","endTime":"0","summary":" 2025年1月20日,杭州深度求索人工智能基础技术研究有限公司正式发布了其最新研发的高性能AI推理模型——DeepSeekR1。与OpenAI的o1相比,R1在多个基准测试中表现优异,同时价格仅为o1的几十分之一,具有极高的性价比。同时,DeepSeek还开源了R1-Zero和多个蒸馏后的小模型,进一步推动了AI技术的普及与创新。","market":"sh","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/roll/2025-01-27/doc-inehkyez8791263.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"1","news_top_title":null,"news_tag":"productRelease","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["RL","BK4585","LU0006061336.USD","BK4202","BK4214","SFT","BK4588"],"gpt_icon":0},{"id":"2506134531","title":"DeepSeek,超震撼!这个国产AI凭什么让游戏大神都惊呆了?","url":"https://stock-news.laohu8.com/highlight/detail?id=2506134531","media":"市场资讯","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2506134531?lang=zh_cn&edition=fundamental","pubTime":"2025-01-27 13:19","pubTimestamp":1737955140,"startTime":"0","endTime":"0","summary":" DeepSeek,听说过吗? 为了讲清楚这个成果有多惊人,我打个比方:如果有一个AI大模型做到了以下的任何一条,都是超级了不起的突破——。 上面的六条,DeepSeek全部、同时做到了。 打开DeepSeek,开启你的AI之旅吧! DeepSeek是一家专注于开发先进人工智能技术的公司,成立于2023年7月,由知名量化资管巨头幻方量化创立。 DeepSeek致力于实现通用人工智能,并强调开源精神和技术创新。","market":"fut","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/stock/hyyj/2025-01-27/doc-inehktxc8906874.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["RL","BK4588","BK4585","LU0496367417.USD","LU0006061336.USD","AGI","LU0368265764.SGD","LU0498741114.HKD","LU0055631609.USD","BK4202","BK4017","LU0498741890.SGD","BK4214","SFT"],"gpt_icon":0},{"id":"2506380730","title":"全球掀DeepSeek复现狂潮!硅谷巨头神话崩塌,30刀见证啊哈时刻","url":"https://stock-news.laohu8.com/highlight/detail?id=2506380730","media":"媒体滚动","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2506380730?lang=zh_cn&edition=fundamental","pubTime":"2025-01-26 11:58","pubTimestamp":1737863880,"startTime":"0","endTime":"0","summary":" 就在刚刚,网上已经出现了一波复现DeepSeek的狂潮。UC伯克利、港科大、HuggingFace等纷纷成功复现,只用强化学习,没有监督微调,30美元就能见证‘啊哈时刻’!全球AI大模型,或许正在进入下一分水岭。 这些天,硅谷彻底处于中国公司带来的大地震余波中。 来自UC伯克利博士生潘家怡和另两位研究人员,在CountDown游戏中复现了DeepSeek R1-Zero。 更令人兴奋的是,成本不到30美金,就可以亲眼见证‘啊哈’时刻。","market":"hk","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://finance.sina.com.cn/roll/2025-01-26/doc-inehhksh0101273.shtml","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"-1","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"sina","symbols":["SFT","BK4214"],"gpt_icon":0},{"id":"2506347693","title":"DeepSeek-R1持续刷屏,连Open R1都来了!抱抱脸发起,1天狂揽1.9k星","url":"https://stock-news.laohu8.com/highlight/detail?id=2506347693","media":"量子位","labels":[],"top":-1,"itemType":null,"share":"https://ttm.financial/m/news/2506347693?lang=zh_cn&edition=fundamental","pubTime":"2025-01-26 11:35","pubTimestamp":1737862518,"startTime":"0","endTime":"0","summary":"现在,这股Open的风也是反向吹起来了,最新目标,正是国产大模型DeepSeek-R1。看来这一波,DeepSeek-R1真是给全球大模型圈带来了不小的震撼,并且影响还在持续。01 Open R1不过话说回来,DeepSeek-R1本身就是开源的,HuggingFace搞这么个“Open R1”项目,又是为何?HuggingFace表示,将以DeepSeek-R1的技术报告为指导,分3个步骤完成这个项目:第1步:用DeepSeek-R1蒸馏高质量语料库,来复制R1-Distill模型。第2步:复制DeepSeek用来构建R1-Zero的纯强化学习pipeline。DeepSeek正在让OpenAI主动大甩卖诶!","market":"sh","thumbnail":null,"type":0,"news_type":0,"thumbnails":[],"rights":null,"property":[],"language":"zh","translate_title":"","themeId":null,"theme_name":"","theme_type":"","isJumpTheme":false,"source_url":"https://tech.ifeng.com/c/8gSLUz3FxMI","is_publish_highlight":false,"source_rank":0,"column":"","sentiment":"0","news_top_title":null,"news_tag":"","news_rank":0,"length":0,"strategy_id":0,"source":"fenghuang_stock","symbols":["LU0006061336.USD","BK4588","RL","BK4214","BK4585","SFT","BK4202"],"gpt_icon":0}],"pageSize":20,"totalPage":2,"pageCount":1,"totalSize":26,"code":"91000000","status":"200"}],"@#url:\"https://hq.skytigris.cn/fundamental/corporate_actions/details/SFT\",params:#limit:5,,,undefined,":[{"market":"US","date":"2023-08-10","symbol":"SFT","fiscalQuarterEnding":"2023/06","expectedEps":-1.85,"name":null,"time":"盘后","type":"earning","dateTimestamp":1691640000000,"reportTimeType":"post","actualEps":-1.44},{"market":"US","date":"2023-05-11","symbol":"SFT","fiscalQuarterEnding":"2023/03","expectedEps":-2.62,"name":null,"time":"盘后","type":"earning","dateTimestamp":1683777600000,"reportTimeType":"post","actualEps":-2.15},{"market":"US","date":"2023-03-28","symbol":"SFT","fiscalQuarterEnding":"2022/12","expectedEps":-5.07,"name":null,"time":"盘后","type":"earning","dateTimestamp":1679976000000,"reportTimeType":"post","actualEps":-3.65},{"market":"US","date":"2023-03-08","symbol":"SFT","defaultRemindTime":1678285800000,"type":"split","dateTimestamp":1678251600000,"forFactor":10,"toFactor":1,"ratio":10},{"market":"US","date":"2022-08-09","symbol":"SFT","fiscalQuarterEnding":"2022/06","expectedEps":-0.56,"name":null,"time":"盘后","type":"earning","dateTimestamp":1660017600000,"reportTimeType":"post","actualEps":-0.59}],"@#url:\"https://hq.skytigris.cn/fundamental/dividend/history\",params:#symbol:\"SFT\",market:\"US\",,,undefined,":[],"@#url:\"https://hq.skytigris.cn/fundamental/estimate/recommendation\",params:#symbol:\"SFT\",market:\"US\",delay:false,,,undefined,":{},"@#url:\"https://hq.skytigris.cn/value_analysis/stock/SFT\",params:#withQuantilePoint:true,period:\"5year\",factor:\"peRate\",delay:false,algorithm:1,,,undefined,":{"brief":{"id":"SFT","date":"2023-10-17","current":-0.013458,"percent":1,"low":-14.398732,"twenty":-8.041489,"median":-0.967796,"eighty":-0.156343,"high":-0.013458,"avg":-3.589974,"sd":4.206369,"marketCap":1839294},"quantilePoints":[{"date":"2020-10-16","current":-13.030459,"twenty":-13.665752,"median":-13.378246,"eighty":-13.155662,"marketCap":922882230},{"date":"2020-10-23","current":-11.106031,"twenty":-13.350423,"median":-12.659485,"eighty":-12.061289,"marketCap":786584676},{"date":"2020-10-30","current":-10.317712,"twenty":-13.113928,"median":-11.969705,"eighty":-10.922863,"marketCap":730751944},{"date":"2020-11-06","current":-10.07426,"twenty":-12.807875,"median":-11.071253,"eighty":-10.299163,"marketCap":713509482},{"date":"2020-11-13","current":-7.963277,"twenty":-12.596883,"median":-10.914143,"eighty":-10.27134,"marketCap":598559738},{"date":"2020-11-20","current":-7.198628,"twenty":-12.478635,"median":-10.526385,"eighty":-9.035106,"marketCap":541084866},{"date":"2020-11-27","current":-10.060601,"twenty":-12.061289,"median":-10.398862,"eighty":-7.976385,"marketCap":756205101},{"date":"2020-12-04","current":-9.776589,"twenty":-11.349483,"median":-10.27134,"eighty":-8.546596,"marketCap":734857292},{"date":"2020-12-11","current":-9.437958,"twenty":-11.09212,"median":-10.257225,"eighty":-9.398633,"marketCap":709404134},{"date":"2020-12-18","current":-9.437958,"twenty":-11.061979,"median":-10.067431,"eighty":-9.073111,"marketCap":709404134},{"date":"2020-12-24","current":-10.027831,"twenty":-11.04343,"median":-10.067431,"eighty":-9.285028,"marketCap":753741892},{"date":"2020-12-31","current":-9.033786,"twenty":-11.024881,"median":-10.055837,"eighty":-9.263181,"marketCap":679024559},{"date":"2021-01-08","current":-8.771621,"twenty":-10.803404,"median":-9.984136,"eighty":-8.935474,"marketCap":659318888},{"date":"2021-01-15","current":-9.077481,"twenty":-10.769836,"median":-9.787513,"eighty":-8.946398,"marketCap":682308837},{"date":"2021-01-22","current":-9.001016,"twenty":-10.575075,"median":-9.697582,"eighty":-8.944213,"marketCap":676561350},{"date":"2021-01-29","current":-8.957322,"twenty":-10.45219,"median":-9.645506,"eighty":-8.955137,"marketCap":673277072},{"date":"2021-02-05","current":-8.924551,"twenty":-10.405818,"median":-9.547194,"eighty":-8.944213,"marketCap":670813863},{"date":"2021-02-12","current":-11.087416,"twenty":-10.735518,"median":-9.645506,"eighty":-8.955137,"marketCap":833385644},{"date":"2021-02-19","current":-11.600824,"twenty":-10.996861,"median":-9.749658,"eighty":-8.983538,"marketCap":871975915},{"date":"2021-02-26","current":-9.667353,"twenty":-10.932302,"median":-9.787513,"eighty":-9.014124,"marketCap":726646596},{"date":"2021-03-05","current":-8.749774,"twenty":-10.842729,"median":-9.776589,"eighty":-8.983538,"marketCap":657676749},{"date":"2021-03-12","current":-14.398732,"twenty":-11.028048,"median":-9.814821,"eighty":-9.014124,"marketCap":851627427},{"date":"2021-03-19","current":-12.539463,"twenty":-11.094862,"median":-9.984136,"eighty":-9.022863,"marketCap":741659070},{"date":"2021-03-26","current":-12.027648,"twenty":-11.389178,"median":-10.055837,"eighty":-9.022863,"marketCap":711387271},{"date":"2021-04-01","current":-11.643787,"twenty":-11.507717,"median":-10.105663,"eighty":-9.027232,"marketCap":688683422},{"date":"2021-04-09","current":-12.411509,"twenty":-11.72909,"median":-10.169837,"eighty":-9.051264,"marketCap":734091120},{"date":"2021-04-16","current":-10.819196,"twenty":-11.73762,"median":-10.213531,"eighty":-9.077481,"marketCap":639912191},{"date":"2021-04-23","current":-10.597948,"twenty":-11.656583,"median":-10.191684,"eighty":-9.077481,"marketCap":626826237},{"date":"2021-04-30","current":-11.992041,"twenty":-11.88832,"median":-10.264283,"eighty":-9.094959,"marketCap":709281232},{"date":"2021-05-07","current":-11.366121,"twenty":-11.97785,"median":-10.30092,"eighty":-9.134283,"marketCap":672260622},{"date":"2021-05-14","current":-7.191308,"twenty":-11.953683,"median":-10.28613,"eighty":-9.077481,"marketCap":644125458},{"date":"2021-05-21","current":-7.017514,"twenty":-11.94087,"median":-10.257225,"eighty":-9.022863,"marketCap":628558742},{"date":"2021-05-28","current":-6.651138,"twenty":-11.88832,"median":-10.186222,"eighty":-8.950768,"marketCap":595742422},{"date":"2021-06-04","current":-7.111457,"twenty":-11.820079,"median":-10.174632,"eighty":-8.880857,"marketCap":636973183},{"date":"2021-06-11","current":-7.872392,"twenty":-11.761789,"median":-10.150994,"eighty":-8.77599,"marketCap":705130155},{"date":"2021-06-18","current":-7.750267,"twenty":-11.660848,"median":-10.067431,"eighty":-8.135607,"marketCap":694191382},{"date":"2021-06-25","current":-8.08846,"twenty":-11.635194,"median":-10.027831,"eighty":-7.997621,"marketCap":724483370},{"date":"2021-07-02","current":-7.919363,"twenty":-11.592085,"median":-9.887162,"eighty":-7.969831,"marketCap":709337376},{"date":"2021-07-09","current":-8.351499,"twenty":-11.557129,"median":-9.814821,"eighty":-7.947546,"marketCap":748043804},{"date":"2021-07-16","current":-7.750267,"twenty":-11.511784,"median":-9.776589,"eighty":-7.919363,"marketCap":694191382},{"date":"2021-07-23","current":-7.938152,"twenty":-11.501616,"median":-9.683739,"eighty":-7.909969,"marketCap":711020264},{"date":"2021-07-30","current":-7.938152,"twenty":-11.476428,"median":-9.645506,"eighty":-7.909969,"marketCap":711020264},{"date":"2021-08-06","current":-8.041489,"twenty":-11.458965,"median":-9.547194,"eighty":-7.909969,"marketCap":720276149},{"date":"2021-08-13","current":-6.282,"twenty":-11.373662,"median":-9.437958,"eighty":-7.862998,"marketCap":642259065},{"date":"2021-08-20","current":-5.779769,"twenty":-11.366121,"median":-9.399726,"eighty":-7.825421,"marketCap":590912010},{"date":"2021-08-27","current":-6.1338,"twenty":-11.331011,"median":-9.263181,"eighty":-7.769055,"marketCap":627107475},{"date":"2021-09-03","current":-6.644264,"twenty":-11.266543,"median":-9.214025,"eighty":-7.71269,"marketCap":679296285},{"date":"2021-09-10","current":-6.693664,"twenty":-11.263063,"median":-9.170331,"eighty":-7.657199,"marketCap":684346815},{"date":"2021-09-17","current":-6.520765,"twenty":-11.235977,"median":-9.077481,"eighty":-7.333643,"marketCap":666669960},{"date":"2021-09-24","current":-6.306699,"twenty":-11.168077,"median":-9.055633,"eighty":-7.204045,"marketCap":644784330},{"date":"2021-10-01","current":-5.63157,"twenty":-11.115373,"median":-9.022863,"eighty":-7.10582,"marketCap":575760420},{"date":"2021-10-08","current":-5.48337,"twenty":-11.091139,"median":-8.979169,"eighty":-6.97419,"marketCap":560608830},{"date":"2021-10-15","current":-5.60687,"twenty":-11.082774,"median":-8.935474,"eighty":-6.846103,"marketCap":573235155},{"date":"2021-10-22","current":-5.53277,"twenty":-11.073325,"median":-8.848086,"eighty":-6.640971,"marketCap":565659360},{"date":"2021-10-29","current":-5.623336,"twenty":-11.052704,"median":-8.793468,"eighty":-6.608037,"marketCap":574918665},{"date":"2021-11-05","current":-6.026768,"twenty":-11.035852,"median":-8.711541,"eighty":-6.486185,"marketCap":616164660},{"date":"2021-11-12","current":-4.263503,"twenty":-11.026464,"median":-8.426654,"eighty":-6.395619,"marketCap":495875283},{"date":"2021-11-19","current":-3.585536,"twenty":-10.987521,"median":-8.304528,"eighty":-6.301759,"marketCap":417022983},{"date":"2021-11-26","current":-3.313625,"twenty":-10.932302,"median":-8.262254,"eighty":-6.234246,"marketCap":385397787},{"date":"2021-12-03","current":-2.99904,"twenty":-10.897569,"median":-8.135431,"eighty":-6.13874,"marketCap":348809389},{"date":"2021-12-10","current":-2.761354,"twenty":-10.8665,"median":-8.08846,"eighty":-6.066287,"marketCap":321164822},{"date":"2021-12-17","current":-2.278991,"twenty":-10.83057,"median":-8.041489,"eighty":-6.031708,"marketCap":265062613},{"date":"2021-12-23","current":-2.418806,"twenty":-10.812879,"median":-8.041489,"eighty":-5.964195,"marketCap":281324123},{"date":"2021-12-31","current":-2.383853,"twenty":-10.789977,"median":-7.990585,"eighty":-5.876922,"marketCap":277258745},{"date":"2022-01-07","current":-2.125194,"twenty":-10.752677,"median":-7.966335,"eighty":-5.804469,"marketCap":247174952},{"date":"2022-01-14","current":-1.831582,"twenty":-10.7182,"median":-7.952243,"eighty":-5.689203,"marketCap":213025781},{"date":"2022-01-21","current":-1.391163,"twenty":-10.687614,"median":-7.938152,"eighty":-5.63157,"marketCap":161802024},{"date":"2022-01-28","current":-1.391163,"twenty":-10.613752,"median":-7.909969,"eighty":-5.610163,"marketCap":161802024},{"date":"2022-02-04","current":-1.412136,"twenty":-10.583635,"median":-7.900575,"eighty":-5.573937,"marketCap":164241251},{"date":"2022-02-11","current":-1.328246,"twenty":-10.508175,"median":-7.862998,"eighty":-5.48337,"marketCap":154484345},{"date":"2022-02-18","current":-1.251348,"twenty":-10.434996,"median":-7.834815,"eighty":-5.368104,"marketCap":145540514},{"date":"2022-02-25","current":-1.328246,"twenty":-10.433641,"median":-7.825421,"eighty":-4.172642,"marketCap":154484345},{"date":"2022-03-04","current":-1.174449,"twenty":-10.398862,"median":-7.778449,"eighty":-3.480696,"marketCap":136596684},{"date":"2022-03-11","current":-1.18144,"twenty":-10.344614,"median":-7.750267,"eighty":-3.222745,"marketCap":137409759},{"date":"2022-03-18","current":-1.317001,"twenty":-10.317712,"median":-7.71269,"eighty":-3.040985,"marketCap":218975116},{"date":"2022-03-25","current":-1.222217,"twenty":-10.30092,"median":-7.668959,"eighty":-2.852234,"marketCap":203215544},{"date":"2022-04-01","current":-1.047614,"twenty":-10.27134,"median":-7.64693,"eighty":-2.495705,"marketCap":174184752},{"date":"2022-04-08","current":-1.007705,"twenty":-10.27134,"median":-7.331348,"eighty":-2.411816,"marketCap":167549142},{"date":"2022-04-14","current":-0.922898,"twenty":-10.260048,"median":-7.225936,"eighty":-2.309751,"marketCap":153448472},{"date":"2022-04-22","current":-0.768251,"twenty":-10.239747,"median":-7.198628,"eighty":-2.255222,"marketCap":127735484},{"date":"2022-04-29","current":-0.667277,"twenty":-10.200423,"median":-7.134942,"eighty":-2.125194,"marketCap":110946814},{"date":"2022-05-06","current":-0.587602,"twenty":-10.182946,"median":-7.022996,"eighty":-1.997962,"marketCap":97699433},{"date":"2022-05-13","current":-0.563219,"twenty":-10.179695,"median":-6.965571,"eighty":-1.662405,"marketCap":101695320},{"date":"2022-05-20","current":-0.469349,"twenty":-10.171755,"median":-6.914177,"eighty":-1.50721,"marketCap":84746100},{"date":"2022-05-27","current":-0.502203,"twenty":-10.161098,"median":-6.728766,"eighty":-1.435904,"marketCap":90678327},{"date":"2022-06-03","current":-0.474042,"twenty":-10.154162,"median":-6.647701,"eighty":-1.412136,"marketCap":85593561},{"date":"2022-06-10","current":-0.359991,"twenty":-10.142637,"median":-6.627798,"eighty":-1.391163,"marketCap":65000258},{"date":"2022-06-17","current":-0.299163,"twenty":-10.099382,"median":-6.590747,"eighty":-1.353413,"marketCap":54017164},{"date":"2022-06-24","current":-0.427483,"twenty":-10.068796,"median":-6.512531,"eighty":-1.33173,"marketCap":77186747},{"date":"2022-07-01","current":-0.407207,"twenty":-10.05679,"median":-6.479598,"eighty":-1.315359,"marketCap":73525716},{"date":"2022-07-08","current":-0.457709,"twenty":-10.046425,"median":-6.430199,"eighty":-1.289098,"marketCap":82644396},{"date":"2022-07-15","current":-0.506897,"twenty":-10.019092,"median":-6.339633,"eighty":-1.228978,"marketCap":91525788},{"date":"2022-07-22","current":-0.478736,"twenty":-9.968843,"median":-6.306699,"eighty":-1.198218,"marketCap":86441022},{"date":"2022-07-29","current":-0.474042,"twenty":-9.899467,"median":-6.2581,"eighty":-1.151401,"marketCap":85593561},{"date":"2022-08-05","current":-0.657088,"twenty":-9.857378,"median":-6.209608,"eighty":-1.118523,"marketCap":118644540},{"date":"2022-08-12","current":-0.51882,"twenty":-9.818098,"median":-6.137917,"eighty":-1.07118,"marketCap":104334147},{"date":"2022-08-19","current":-0.413369,"twenty":-9.807174,"median":-6.125567,"eighty":-1.009701,"marketCap":83128019},{"date":"2022-08-26","current":-0.388651,"twenty":-9.794067,"median":-6.047351,"eighty":-0.958817,"marketCap":78157303},{"date":"2022-09-02","current":-0.344404,"twenty":-9.771203,"median":-6.035001,"eighty":-0.881992,"marketCap":69259212},{"date":"2022-09-09","current":-0.35769,"twenty":-9.749658,"median":-6.018534,"eighty":-0.778228,"marketCap":71931184},{"date":"2022-09-16","current":-0.31319,"twenty":-9.6892,"median":-5.940318,"eighty":-0.702135,"marketCap":62982198},{"date":"2022-09-23","current":-0.275185,"twenty":-9.678277,"median":-5.886802,"eighty":-0.667277,"marketCap":55339510},{"date":"2022-09-30","current":-0.295305,"twenty":-9.667353,"median":-5.837402,"eighty":-0.587602,"marketCap":59385639},{"date":"2022-10-07","current":-0.269533,"twenty":-9.645506,"median":-5.804469,"eighty":-0.553832,"marketCap":54202861},{"date":"2022-10-14","current":-0.233216,"twenty":-9.590888,"median":-5.713903,"eighty":-0.539751,"marketCap":46899471},{"date":"2022-10-21","current":-0.204575,"twenty":-9.590888,"median":-5.65627,"eighty":-0.523038,"marketCap":41139887},{"date":"2022-10-28","current":-0.224864,"twenty":-9.5035,"median":-5.63157,"eighty":-0.516284,"marketCap":45219946},{"date":"2022-11-04","current":-0.196644,"twenty":-9.481653,"median":-5.623336,"eighty":-0.506897,"marketCap":39544897},{"date":"2022-11-11","current":-0.137377,"twenty":-9.437958,"median":-5.598636,"eighty":-0.492816,"marketCap":32904556},{"date":"2022-11-18","current":-0.125515,"twenty":-9.437958,"median":-5.573937,"eighty":-0.488123,"marketCap":30063382},{"date":"2022-11-25","current":-0.104221,"twenty":-9.42922,"median":-5.516304,"eighty":-0.478736,"marketCap":24962962},{"date":"2022-12-02","current":-0.093609,"twenty":-9.383341,"median":-5.479254,"eighty":-0.474042,"marketCap":22421310},{"date":"2022-12-09","current":-0.093681,"twenty":-9.302506,"median":-5.401038,"eighty":-0.463715,"marketCap":22438425},{"date":"2022-12-16","current":-0.068313,"twenty":-9.26755,"median":-4.221567,"eighty":-0.445697,"marketCap":16362421},{"date":"2022-12-23","current":-0.057988,"twenty":-9.236965,"median":-3.969951,"eighty":-0.42845,"marketCap":13889231},{"date":"2022-12-30","current":-0.0532,"twenty":-9.230411,"median":-3.585536,"eighty":-0.426187,"marketCap":12742492},{"date":"2023-01-06","current":-0.081497,"twenty":-9.217303,"median":-3.404505,"eighty":-0.413051,"marketCap":19520232},{"date":"2023-01-13","current":-0.077889,"twenty":-9.19327,"median":-3.268185,"eighty":-0.404501,"marketCap":18655899},{"date":"2023-01-20","current":-0.066098,"twenty":-9.180162,"median":-3.149342,"eighty":-0.393142,"marketCap":15831841},{"date":"2023-01-27","current":-0.071172,"twenty":-9.147392,"median":-3.040985,"eighty":-0.372549,"marketCap":17047041},{"date":"2023-02-03","current":-0.097647,"twenty":-9.112436,"median":-2.957095,"eighty":-0.360585,"marketCap":23388336},{"date":"2023-02-10","current":-0.103435,"twenty":-9.077481,"median":-2.761354,"eighty":-0.354215,"marketCap":24774692},{"date":"2023-02-17","current":-0.091287,"twenty":-9.077481,"median":-2.4992,"eighty":-0.338644,"marketCap":21865056},{"date":"2023-02-24","current":-0.07503,"twenty":-9.077481,"median":-2.436284,"eighty":-0.334787,"marketCap":17971279},{"date":"2023-03-03","current":-0.07503,"twenty":-9.033786,"median":-2.411816,"eighty":-0.324705,"marketCap":17971279},{"date":"2023-03-10","current":-0.090144,"twenty":-9.022863,"median":-2.345403,"eighty":-0.307424,"marketCap":21591319},{"date":"2023-03-17","current":-0.097242,"twenty":-9.022863,"median":-2.285982,"eighty":-0.291045,"marketCap":23291423},{"date":"2023-03-24","current":-0.096532,"twenty":-9.022863,"median":-2.230055,"eighty":-0.287376,"marketCap":23121413},{"date":"2023-03-31","current":-0.112052,"twenty":-9.001016,"median":-2.153157,"eighty":-0.283284,"marketCap":19277585},{"date":"2023-04-06","current":-0.114053,"twenty":-8.9748,"median":-2.125194,"eighty":-0.275868,"marketCap":19621828},{"date":"2023-04-14","current":-0.138195,"twenty":-8.950768,"median":-2.041305,"eighty":-0.240969,"marketCap":23775301},{"date":"2023-04-21","current":-0.144203,"twenty":-8.942028,"median":-1.90848,"eighty":-0.232507,"marketCap":24809009},{"date":"2023-04-28","current":-0.144203,"twenty":-8.933289,"median":-1.747693,"eighty":-0.223818,"marketCap":24809009},{"date":"2023-05-05","current":-0.159224,"twenty":-8.926736,"median":-1.660308,"eighty":-0.221768,"marketCap":27393281},{"date":"2023-05-12","current":-0.18426,"twenty":-8.880857,"median":-1.530979,"eighty":-0.212474,"marketCap":31700401},{"date":"2023-05-19","current":-0.140497,"twenty":-8.834978,"median":-1.485539,"eighty":-0.204117,"marketCap":22913877},{"date":"2023-05-26","current":-0.163236,"twenty":-8.813131,"median":-1.44709,"eighty":-0.197028,"marketCap":26622384},{"date":"2023-06-02","current":-0.160117,"twenty":-8.800022,"median":-1.415631,"eighty":-0.184832,"marketCap":26113676},{"date":"2023-06-09","current":-0.197547,"twenty":-8.784729,"median":-1.412136,"eighty":-0.17301,"marketCap":32218172},{"date":"2023-06-16","current":-0.233937,"twenty":-8.762882,"median":-1.394658,"eighty":-0.180691,"marketCap":38153099},{"date":"2023-06-23","current":-0.220421,"twenty":-8.734481,"median":-1.384173,"eighty":-0.18426,"marketCap":35948697},{"date":"2023-06-30","current":-0.22354,"twenty":-8.673309,"median":-1.359054,"eighty":-0.18426,"marketCap":36457405},{"date":"2023-07-07","current":-0.198587,"twenty":-8.66457,"median":-1.345581,"eighty":-0.185403,"marketCap":32387742},{"date":"2023-07-14","current":-0.251613,"twenty":-8.4738,"median":-1.328246,"eighty":-0.18769,"marketCap":41035777},{"date":"2023-07-21","current":-0.22562,"twenty":-8.36653,"median":-1.317001,"eighty":-0.193057,"marketCap":36796544},{"date":"2023-07-28","current":-0.18819,"twenty":-8.336469,"median":-1.314265,"eighty":-0.193057,"marketCap":30692048},{"date":"2023-08-04","current":-0.210024,"twenty":-8.287618,"median":-1.272321,"eighty":-0.193473,"marketCap":34253004},{"date":"2023-08-11","current":-0.201,"twenty":-8.26883,"median":-1.251348,"eighty":-0.189853,"marketCap":27470231},{"date":"2023-08-18","current":-0.154234,"twenty":-8.259436,"median":-1.219723,"eighty":-0.185403,"marketCap":21078786},{"date":"2023-08-25","current":-0.148014,"twenty":-8.159856,"median":-1.195422,"eighty":-0.180258,"marketCap":20228834},{"date":"2023-09-01","current":-0.149258,"twenty":-8.135431,"median":-1.170954,"eighty":-0.169267,"marketCap":20398825},{"date":"2023-09-08","current":-0.154234,"twenty":-8.112885,"median":-1.144893,"eighty":-0.1672,"marketCap":21078786},{"date":"2023-09-15","current":-0.157965,"twenty":-8.092218,"median":-1.118523,"eighty":-0.16282,"marketCap":21588756},{"date":"2023-09-22","current":-0.143039,"twenty":-8.08846,"median":-1.102489,"eighty":-0.15976,"marketCap":19548874},{"date":"2023-09-29","current":-0.169159,"twenty":-8.07155,"median":-1.069588,"eighty":-0.158632,"marketCap":23118668},{"date":"2023-10-06","current":-0.220156,"twenty":-8.049004,"median":-1.032649,"eighty":-0.159156,"marketCap":30088267},{"date":"2023-10-13","current":-0.016667,"twenty":-8.041489,"median":-0.977773,"eighty":-0.157578,"marketCap":2277868},{"date":"2023-10-17","current":-0.013458,"twenty":-8.041489,"median":-0.967796,"eighty":-0.156343,"marketCap":1839294}],"updateTime":1746803773951}}}