炒股就看金麒麟分析师研报,权威,专业,及时,全面,助您挖掘潜力主题机会!
每经记者:张宝莲 每经编辑:董兴生
5月下旬,A股可控核聚变概念板块大涨,风头一时无两。可控核聚变为我们描绘了一个无比美好的蓝图,接近零成本、无限获取的能源,将让人类文明再度来到新的起点。
可控核聚变背后,藏着一个怎样的人类新未来?端午节后的首个工作日,合肥综合性国家科学研究中心能源研究院科发处处长、聚变产业应用研究中心副主任孔德峰研究员接受了《每日经济新闻》记者的专访。
孔德峰
“我最开始选择可控核聚变这一研究方向,完全是随机的。但在多年的研究过程中,我逐渐坚信聚变技术是能够深刻影响人类社会发展的关键技术。一旦可控核聚变取得成功,人类社会必将迎来巨大的变革。怀揣着这样的梦想,我希望能为这一巨变贡献自己的力量。”
过去20余年,孔德峰做的事情很纯粹。本科阶段,他选择了应用物理专业,学习等离子体物理,继续深造时,选择研究可控核聚变。2007年到2013年,孔德峰在中国科学技术大学完成了硕博连读。之后的9年中,孔德峰扎根中国科学院等离子体物理研究所,开展可控核聚变的技术研究;2022年,进入合肥综合性国家科学中心能源研究院,继续开展聚变设计相关工作,持续在这条充满挑战与机遇的道路上探索前行。
作为聚变堆设计粒子控制负责人,孔德峰重点研究芯部加料对氚自持及氚燃烧份额的影响的评估,长期从事磁约束等离子体粒子反常输运研究和聚变堆装置物理设计。目前,其已在国际主要等离子体物理期刊发表文章30余篇,其中以第一作者和通讯作者在NF、PPCF及POP等发表文章共计15篇。
孔德峰称,可控核聚变旨在模仿太阳原理,在地球上创造持续聚变能量,实现这一目标需要解决高温、高密度和能量约束时间等难题。目前,人类已能将等离子体温度提高到1.6亿度,但提高密度和能量约束时间仍是挑战。氚是可控核聚变的重要燃料,但自然界中含量极少,且提取成本昂贵。实现氚自持是可控核聚变商业化的关键一步。
他还提到,必须重视核聚变的研发,并预计一旦可控核聚变商业化大规模实现,人类的生产生活方式将被彻底颠覆。
以下为《每日经济新闻》记者(以下简称“NBD”)与孔德峰的对话实录:
聚变反应的核心逻辑:打造“磁笼子”,增加氘氚的碰撞次数
过去70多年,科学家们为实现可控核聚变做出的所有努力,若用一句话概括,孔德峰认为是“提高氘和氚的碰撞次数”。为了增加高温氘氚的碰撞次数,科学家们想了个办法,将它们约束在利用磁场打造的“磁笼子”里,让带电粒子循环跑圈,不断创造碰撞机会。
NBD:请介绍一下你在可控核聚变领域开展的主要工作?
孔德峰:可控核聚变是一个非常复杂的系统,我们每一个“聚变人”都是这个复杂系统中的螺丝钉。我从研究开始,主要做的是湍流这部分,研究可控核聚变里面的一些不稳定性。后来逐步转到了芯部加料的系统开发,以及整个聚变反应堆的物理设计。
NBD:自诞生起,可控核聚变要解决的是什么问题?
孔德峰:可控核聚变最重要的目标就是解决人类能源的问题。聚变所产生的能源非常巨大,太阳是一个天然的聚变反应堆,滋养了地球和人类文明。人类目前使用的大部分能源——化石能源、光伏发电,甚至农业生产的粮食,本质上都是太阳能的转化产物。而太阳能从聚变中产生,掌握可控核聚变技术,对于人类未来的发展会起到非常关键的作用。
NBD:如何理解“可控”二字?
孔德峰:它实际上是相对于氢弹爆炸,即核武器的爆炸而言的。“曼哈顿”计划(美国陆军部研制原子弹计划)主要研究原子弹(一种核裂变武器),但此后科学家很快开始探索氢弹(不可控核聚变)。氢弹爆炸会在瞬间释放出巨大的能量,对社会和城市造成巨大的破坏。因此,许多科学家开始思考,能否将氢弹释放的能量缓慢地释放出来,而不是在一瞬间全部释放,从而避免对环境、生态和装置的破坏。
NBD:实现可控核聚变,我们已经达成了哪些初步目标?
孔德峰:实现可控核聚变是一项极具挑战性的任务。一方面,我们希望核聚变反应能够释放出能量,这需要满足所谓的“聚变三乘积”条件,即需要达到更高的温度、更高的密度以及更长的能量约束时间。这是评估聚变反应能否实现点火(即能量自持燃烧)的核心判据,也被称为“劳逊判据”。
具体来说,要实现较好的能量输出,聚变反应的温度需要达到约1.6亿度。经过可控核聚变领域70多年的发展,EAST装置(世界首个全超导托卡马克装置)已经能够将等离子体温度提升到1亿度,并且稳定运行1000多秒,中核集团的中国环流器3号装置也报道了电子和离子双亿度的实验结果。
但仅仅提高温度是不够的,我们还需要同时提高等离子体的密度和能量约束时间。因此,长期以来,人类一直在努力研究如何提高这三个参数,以达到聚变点火的条件。这是实现可控核聚变面临的核心挑战之一。
NBD:针对这三个参数,我们目前重点在突破哪一个方向?
孔德峰:经过早期发展,像欧洲“联合环”,还有美国的TFTR装置等,已摸索出在托卡马克装置上提高温度的方法,并且实现了聚变输出功率接近输入功率。就当下工程技术而言,温度已能达到,但想实现更高的功率输出,核心是提高密度和能量约束时间,尤其是能量约束时间。
能量约束时间是不好理解的物理量。举例来说,假设你和我是两个燃料粒子,你是氘,我是氚,科学家们费大力气把我们加热到1.6亿度,可即便正面碰撞,发生聚变反应的概率可能仅1%或更低。若碰撞没发生聚变反应,你我就会朝不同方向分离,加热消耗的能量就浪费了。
因此,提高碰撞次数才是科学家努力追求的目标。以托卡马克装置为例,它利用磁场打造“磁笼子”,可以理解成让粒子循环运动的“跑道”。燃料粒子第一次碰面没碰撞成功也无妨,借助磁场约束,粒子能在“跑道”里循环跑圈,不断创造碰撞机会。每多跑一圈,就多一次碰撞可能,碰撞次数也随之增加。
而提高能量约束时间,本质上就是让粒子在“跑道”里停留更久,以此提高碰撞次数。粒子停留时间越长,碰撞次数越多,总有一次能发生聚变反应。并且,磁场强度越大,粒子聚在一起碰撞的次数往往越多,在“跑道”停留时间也越长。
商业化的关键一步:氘氚的稳定燃烧和氚的闭环循环
今年5月1日,合肥BEST(紧凑型聚变能实验装置)项目启动了工程总装,比预计时间提前2个月,项目将于2027年完工,有望成为世界首个开展氘氚稳态燃烧的实验装置。此前不久,中核集团核工业西南物理研究院再次创下我国聚变装置运行新纪录——新一代人造太阳“中国环流三号”实现百万安培亿度H模,中国聚变快速挺进燃烧实验。技术持续突破、政策不断落地以及国内招投标加速,核聚变技术的工程化与商业化进程正在提速。
NBD:怎么理解EAST、BEST、CFEDR(中国聚变工程示范堆)之间的关系?
孔德峰:EAST是一个等离子体物理实验装置,核心是围绕劳逊判据展开研究——如何提高温度。EAST装置的另一大特点是全超导,能够实现长时间的稳定放电。BEST核心目的是进行氘氚反应,即实现Q>1(Q=聚变输出能量/输入能量)的稳定功率输出。BEST目前聚变功率仅为50兆瓦到200兆瓦的水平。对未来的聚变反应堆来说,需要进一步提高聚变功率,目标是达到吉瓦(GW)级别,类似于现代煤电站的功率水平。
BEST之后就是CFEDR,要解决的是吉瓦级聚变功率问题和氚自持问题。氘在自然界中相对丰富,如海水中就含有氘,但氚在自然界中含量极少。因此,如何实现氚的增殖也是未来聚变反应堆需要解决的一个重要问题。
NBD:氚从哪儿来?
孔德峰:现在的氚主要从核电站的重水反应堆中来,每年产量也就数公斤,但是一个吉瓦级的聚变堆每年消耗的氚可能达到几十公斤。从重水反应堆中提取氚,将其放入聚变装置中进行反应。氘和氚反应后会产生中子,氚被消耗了。有人提出能否重新将这些中子打入锂-6中发生核反应,从而产生氚。再把氚重新提取出来,进一步注入到托卡马克装置中,以满足反应中对氚的消耗,这就是氚增殖的概念。
换句话说,就是形成一个氚的闭环循环过程。理论上,这个循环是可以达到的,但毕竟还没有在实际装置上验证过。
所以,从实现聚变商业化的角度来看,中间还有两步路要走。第一步就是通过BEST装置进行验证,其核心使命是实现氘氚的稳定燃烧,这是一个需要进行系统验证的目标。另一个核心使命是氚增殖,即实现氚的闭环循环,消耗多少氚就能产生多少氚,甚至产生的氚要大于消耗的氚,这是CFEDR等示范堆要验证的目标。
只有完成了这两个核心目标,我们才能认为初步具备了商业化的价值,进而可以推进到商业化聚变堆的设计和建造阶段。
NBD:有分析认为2030年是可控核聚变商业化的重要节点,你怎么看?
孔德峰:我感觉这个有点困难,可能没有这么乐观。BEST建成时间是2027年,做氘氚运行可能还得两三年的时间,有可能到2030年左右实现氘氚实验。
要实现可控核聚变的大规模应用,无疑还有漫长的路要走。但这是必须做的一件事,因为谁掌握了这项技术,谁就掌握了人类文明未来的发展方向。至于何时能实现商业化,不同的人可能有不同的看法。刚开始时,其成本可能会非常高,但随着可控核聚变技术的发展、投入的增加以及规模化的扩大,每一项技术进步都意味着成本降低。最终,其成本有可能比其他发电方式还要低很多,这就是可控核聚变的一个显著特点。
聚变工程攻坚,创造了“沿途下蛋”的可能
科学家耗时70多年,将等离子体温度从百万度提升至亿度,为可控核聚变点火奠定了基础。当前,第一壁材料如何抵御高温等离子体攻击、如何稳定聚变反应中的高能粒子,以及如何提升芯部加料效率等难题,仍有待攻克。尽管前路漫漫,但秉持着“沿途下蛋”的创新模式,研发过程中催生的技术成果已惠及其他行业的科技进步。
NBD:怎么理解核聚变反应中的那些不稳定性?
孔德峰:托卡马克装置中心部温度达到一点几亿度,边缘温度只有几千度或几百度,这种温度梯度会造成一种势能,使高温高密度的粒子容易往边缘跑,造成不稳定性,类似“雪崩”。而且聚变反应产生的高能阿尔法粒子也会带来各种不稳定性,需要控制这些粒子的运动轨迹,防止它们破坏装置。
NBD:你在当前工作中遇到哪些技术上的瓶颈?
孔德峰:有很多技术瓶颈。比如芯部加料问题,现在常规的加料手段效率很低,以ITER装置为例,每注入100个氚粒子,仅有0.3个参与核反应,其余99.7个会被抽离,经氚工厂分离提纯后循环利用。但这一过程存在损耗,系统损耗的氚甚至超过实际反应消耗的量,对氚自持的循环提出了挑战。现在我们想办法把燃料粒子直接注入到芯部等离子体当中去,提高燃烧效率,这需要开发新的加料系统,又是一个非常复杂的挑战。
还有材料损伤问题。聚变反应产生的高温高密度等离子体对材料的腐蚀和损伤比较严重,需要开发新的运行模式,或者提高材料的耐受能力。
NBD:研发过程中有很多专利,对其他领域的科技进步有没有帮助?
孔德峰:可控核聚变涉及很多前沿技术,这些技术可以拓展到其他应用场景。比如超导技术可以用在高分辨率核磁共振、材料检测、蛋白质筛查、污水处理、半导体单晶提拉等领域;微波技术可以用在安检仪、肿瘤细胞检测等领域;等离子体技术可以用在麻醉机消毒、细胞消融等领域;聚变中子可用于同位素制药(如锝-99m)、中子活化分析谱仪实现元素快速鉴定等。
未来图景:聚变的终点,人类文明跃迁的起点
当可控核聚变实现大规模商业化,人类将叩开“终极能源”的大门。接近于零的用电成本,释放的巨量电能,将重构人类社会的能源使用逻辑,引发生产和生活方式的颠覆性变革。“人造太阳”照亮地球时,那个能源免费、物质丰裕的未来,来得比我们想象得更真实。
NBD:可控核聚变商业化实现之后,我们的生活大概会是什么样的?
孔德峰:可控核聚变最大的特点是原料成本非常低,氚虽然很贵,但它只是反应过程的中间产物,真正的原料成本——即氘和锂的成本可以忽略不计。随着规模化发展,建造成本也会降低,而且装置固有安全属性高,在安全防护方面的成本可能比现有的核电站低得多。
我们单位正在与中央美术学院等团队合作,畅想电费降为一分钱时,未来的生活会发生哪些变化。
我个人畅想,当电费降到足够低,社会将发生根本性的变化。比如,农业可能会完全改变形式。目前,中国科学院天津工业生物技术研究所通过电、二氧化碳和水就可以合成淀粉,如果电足够便宜,我们是不是可以通过工厂来生产粮食,而不再需要大量的农田。
另外,环境沙漠化问题也将得到解决。沙漠化问题的根源在于淡水短缺,海水淡化的最大成本就是电费。当电费足够低时,我们就可以通过沿海地区大规模生产淡水,再将其输送到需要的地方。
Disclaimer: Investing carries risk. This is not financial advice. The above content should not be regarded as an offer, recommendation, or solicitation on acquiring or disposing of any financial products, any associated discussions, comments, or posts by author or other users should not be considered as such either. It is solely for general information purpose only, which does not consider your own investment objectives, financial situations or needs. TTM assumes no responsibility or warranty for the accuracy and completeness of the information, investors should do their own research and may seek professional advice before investing.