IT之家 6 月 5 日消息,科技媒体 marktechpost 昨日(6 月 4 日)发布博文,报道称英伟达推出 ProRL 强化学习方法,并开发出全球最佳的 1.5B 参数推理模型 Nemotron-Research-Reasoning-Qwen-1.5B。
背景简介
推理模型是一种专门的人工智能系统,通过详细的长链推理(Chain of Thought,CoT)过程生成最终答案。
强化学习(Reinforcement Learning,RL)在训练中扮演非常重要的角色,DeepSeek 和 Kimi 等团队采用可验证奖励的强化学习(RLVR)方法,推广了 GRPO、Mirror Descent 和 RLOO 等算法。
然而,研究者仍在争论强化学习是否真正提升大型语言模型(LLM)的推理能力。现有数据表明,RLVR 在 pass@k 指标上未能显著优于基础模型,显示推理能力扩展受限。
此外,当前研究多集中于数学等特定领域,模型常被过度训练,限制了探索潜力;同时,训练步数通常仅数百步,未能让模型充分发展新能力。
ProRL 方法的突破与应用
英伟达研究团队为解决上述问题,推出 ProRL 方法,延长强化学习训练时间至超过 2000 步,并将训练数据扩展至数学、编程、STEM、逻辑谜题和指令遵循等多个领域,涵盖 13.6 万个样本。
他们采用 verl 框架和改进的 GRPO 方法,开发出 Nemotron-Research-Reasoning-Qwen-1.5B 模型。
这是全球最佳的 1.5B 参数推理模型,在多项基准测试中超越基础模型 DeepSeek-R1-1.5B,甚至优于更大的 DeepSeek-R1-7B。
测试结果显示,该模型在数学领域平均提升 15.7%,编程任务 pass@1 准确率提升 14.4%,STEM 推理和指令遵循分别提升 25.9% 和 22.0%,逻辑谜题奖励值提升 54.8%,展现出强大的泛化能力。
Disclaimer: Investing carries risk. This is not financial advice. The above content should not be regarded as an offer, recommendation, or solicitation on acquiring or disposing of any financial products, any associated discussions, comments, or posts by author or other users should not be considered as such either. It is solely for general information purpose only, which does not consider your own investment objectives, financial situations or needs. TTM assumes no responsibility or warranty for the accuracy and completeness of the information, investors should do their own research and may seek professional advice before investing.