直击WAIC丨如何缓解AI训练“效率瓶颈”?摩尔线程张建中:打造AGI“超级工厂”

新浪科技
Jul 27

专题:2025世界人工智能大会

  新浪科技讯 7月27日午间消息,2025世界人工智能大会(WAIC 2025)于7月26-28日在上海举办。大会期间,摩尔线程首次提出了“AI工厂”理念,公司创始人兼CEO张建中在分享中表示,“为应对生成式AI爆发式增长下的大模型训练效率瓶颈,摩尔线程将通过系统级工程创新,构建新一代AI训练基础设施,为AGI时代打造生产先进模型的“超级工厂”。

  据悉,摩尔线程提出的“AI工厂”,如同芯片晶圆厂的制程升级,需要实现从底层芯片架构创新、到集群整体架构的优化,再到软件算法调优和资源调度系统的全面升级。这种全方位的基础设施变革,将推动AI训练从千卡级向万卡级乃至十万卡级规模演进,以系统级工程实现生产力和创新效率飞跃。

  具体而言,这座“AI工厂”的智能“产能”,由五大核心要素共同决定,其效率公式可概括为:AI工厂生产效率=加速计算通用性×单芯片有效算力×单节点效率×集群效率×集群稳定性。摩尔线程将以GPU通用算力为基石,将通过先进架构、芯片算力、单节点效率、集群效率优化与可靠性等协同等深度技术创新,将全功能GPU加速计算平台能力转化为工程级训练效率与可靠性保障。

  在单芯片算力方面,摩尔线程的GPU单芯片基于MUSA架构的突破性设计,可集成AI计算加速、图形渲染、物理仿真及超高清视频编解码能力,充分适配AI训推、具身智能、AIGC等多样化应用场景。且在计算精度方面支持从FP64至INT8的完整精度谱系,并通过FP8混合精度技术,在主流前沿大模型训练中实现20%~30%的性能跃升。

  在内存与通信效率优化上,摩尔线程内存系统通过多精度近存规约引擎、低延迟Scale-Up、通算并行资源隔离等技术,实现了50%的带宽节省和60%的延迟降低。在通信和互联领域,独创ACE异步通信引擎减少了15%的计算资源损耗,MTLink2.0互联技术提供了高出国内行业平均水平60%的带宽,为大规模集群部署奠定了坚实基础。

  在构建高效集群的基础上,稳定可靠的运行环境是“AI工厂”持续产出的保障。特别在万卡级AI集群中,硬件故障导致的训练中断会严重浪费算力。摩尔线程创新推出零中断容错技术,故障发生时仅隔离受影响节点组,其余节点继续训练,备机无缝接入,全程无中断。这一方案使KUAE集群有效训练时间占比超99%,大幅降低恢复开销。(文猛)

海量资讯、精准解读,尽在新浪财经APP

责任编辑:王翔

Disclaimer: Investing carries risk. This is not financial advice. The above content should not be regarded as an offer, recommendation, or solicitation on acquiring or disposing of any financial products, any associated discussions, comments, or posts by author or other users should not be considered as such either. It is solely for general information purpose only, which does not consider your own investment objectives, financial situations or needs. TTM assumes no responsibility or warranty for the accuracy and completeness of the information, investors should do their own research and may seek professional advice before investing.

Most Discussed

  1. 1
     
     
     
     
  2. 2
     
     
     
     
  3. 3
     
     
     
     
  4. 4
     
     
     
     
  5. 5
     
     
     
     
  6. 6
     
     
     
     
  7. 7
     
     
     
     
  8. 8
     
     
     
     
  9. 9
     
     
     
     
  10. 10