站在DeepSeek肩膀上,小红书开源首款多模态模型:看懂表情包与数学题,一手实测

智东西
Aug 07

作者 | 陈骏达

编辑 | 李水青

智东西8月7日报道,昨天,小红书hi lab(人文智能实验室)开源了其首款多模态大模型dots.vlm1,这一模型基于DeepSeek V3打造,并配备了由小红书自研的12亿参数视觉编码器NaViT,具备多模态理解与推理能力。

hi lab称,在主要的视觉评测集上,dots.vlm1的整体表现已接近当前领先模型,如Gemini 2.5 Pro与Seed-VL1.5 thinking,尤其在MMMU、MathVision、OCR Reasoning等多个基准测试中显示出较强的图文理解与推理能力。

这一模型可以看懂复杂的图文交错图表,理解表情包背后的含义,分析两款产品的配料表差异,还能判断博物馆中文物、画作的名称和背景信息。

▲部分官方案例(图源:小红书技术)

在典型的文本推理任务(如AIME、GPQA、LiveCodeBench)上,dots.vlm1的表现大致相当于DeepSeek-R1-0528,在数学和代码能力上已具备一定的通用性,但在GPQA等更多样的推理任务上仍存在差距。

▲dots.vlm1基准测试结果(图源:小红书技术)

总体来看,dots.vlm1在视觉多模态能力方面已接近SOTA(最佳性能)水平,在文本推理方面达到了主流模型的性能。不过,hi lab也强调,dots.vlm1在部分细分任务上仍与最优结果存在一定距离,需要在架构设计与训练数据上进一步优化。

目前,dots.vlm1已上传至开源托管平台Hugging Face,用户还可以在Hugging Face上的体验链接中免费使用这一模型。

今年6月6日,小红书开源了其首款大语言模型,并在之后开源了用于OCR的专用模型,以及视觉、奖励模型等前沿方向的研究成果。这位大模型界新玩家的后续动作,值得持续关注。

一、解读复杂英文图表,还能玩视觉脑筋急转弯

智东西体验了dots.vlm1的多模态理解能力。我们将OpenAI昨日开源模型的体验网页截图上传给dots.vlm1,要求其解读图片的核心信息。

可以看到,dots.vlm1准确识别了图中的大部分信息,还能通过阅读右侧的代码,设想出这一代码可视化后的效果。不过,或许是由于OCR环节的问题,它将其中一款模型的参数量识别错了。

dots.vlm1具备一定的复杂图表推理能力。官方Demo案例中,dots.vlm1读懂了文本交错的英文图表,准确理解图标元素之间的关系,并计算出了用户所问的数据。

上传一张景区价目表,再辅以文字提示词描述团队信息,dots.vlm1就能为用户做好购票方案的规划。

数学能力方面,dots.vlm1能看懂几何题中的图形,并理解颜色等信息,根据这些信息解题,并得出正确答案。

dots.vlm1还能对emoji等视觉信息进行推理。例如,它根据几个emoji所代表的形象,猜测出了这一段信息代表的是《饥饿游戏前传:鸣鸟与蛇之歌》。

二、基于DeepSeek V3打造,12亿视觉编码器实现多模态感知

dots.vlm1由三个核心组件构成:一个12亿参数的NaViT视觉编码器、一个轻量级的MLP适配器,以及DeepSeek V3 MoE大语言模型。这一架构通过三阶段流程进行训练:

(1)视觉编码器预训练

NaViT编码器由hi lab从头训练,旨在最大化对多样视觉数据的感知能力。该编码器包含42层Transformer,采用RMSNorm、SwiGLU和二维旋转位置编码(2D RoPE)等技术。

预训练过程中,NaViT编码器使用双重监督策略,包括下一Token预测(NTP)和下一Patch生成(NPG)。前者通过大量图文对训练模型的感知能力,后者利用纯图像数据,通过扩散模型预测图像patch,增强空间与语义感知能力。训练过程中使用了大量图文对。

在预训练的第二阶段,hi lab逐步逐步提升图像分辨率,从百万像素级别输入开始,在大量token上进行训练,之后升级到千万像素级别进行训练。为进一步提升泛化能力,还引入了更丰富的数据源,包括OCR场景图像、grounding数据和视频帧。

(2)VLM预训练

在这一阶段,hi lab将视觉编码器与DeepSeek V3联合训练,使用大规模、多样化的多模态数据集,主要包括跨模态互译数据和跨模态融合数据。

跨模态互译数据用于训练模型将图像内容用文本进行描述、总结或重构,包括普通图像、复杂图表、表格、公式、图形、OCR场景、视频帧以及对应的文本注释等。

跨模态融合数据用于训练模型在图文混合上下文中执行下一token预测,避免模型过度依赖单一模态。

hi lab称,该团队为不同类型的融合数据设计了专门的清洗管线,以下两类效果尤为显著:

网页数据:网页图文数据多样性丰富,但视觉与文本对齐质量不佳。hi lab采用内部自研的VLM模型进行重写和清洗,剔除低质量图像和弱相关文本。

PDF数据:PDF内容质量普遍较高。为充分利用这类数据,hi lab开发了专用解析模型dots.ocr(这一模型也已开源),将PDF文档转化为图文交错表示。同时还将整页PDF渲染为图像,并随机遮挡部分文本区域,引导模型结合版面与上下文预测被遮挡内容,从而增强其理解视觉格式文档的能力。

(3)VLM后训练

hi lab通过有监督微调(SFT)增强dots.vlm1模型的泛化能力,仅使用任务多样的数据进行训练,并未采用强化学习。

结语:感知推理能力仍有提升空间,下一步将探索强化学习

hi lab称,该团队在评估中发现,dots.vlm1在视觉感知与推理能力上仍存在不足。

在视觉感知方面,hi lab计划扩大跨模态互译数据的规模与多样性,并进一步改进视觉编码器结构,探索更有效的神经网络架构与损失函数设计,从而提升训练效率。

在视觉推理方面,hi lab将使用强化学习方法,以缩小文本与多模态提示在推理能力上的差距;同时也将探索把更多推理能力前置到预训练阶段的可能性,从而增强泛化性和效率。

Disclaimer: Investing carries risk. This is not financial advice. The above content should not be regarded as an offer, recommendation, or solicitation on acquiring or disposing of any financial products, any associated discussions, comments, or posts by author or other users should not be considered as such either. It is solely for general information purpose only, which does not consider your own investment objectives, financial situations or needs. TTM assumes no responsibility or warranty for the accuracy and completeness of the information, investors should do their own research and may seek professional advice before investing.

Most Discussed

  1. 1
     
     
     
     
  2. 2
     
     
     
     
  3. 3
     
     
     
     
  4. 4
     
     
     
     
  5. 5
     
     
     
     
  6. 6
     
     
     
     
  7. 7
     
     
     
     
  8. 8
     
     
     
     
  9. 9
     
     
     
     
  10. 10